Study of the relation among Resist components, Outgassing species and Contamination

Yukiko Kikuchi, Toshiya Takahashi, Norihiko Sugie, Isamu Takagi Kazuhiro Katayama, Eishi Shiobara, Hiroyuki Tanaka, Soichi Inoue Takeo Watanabe*, Tetsuo Harada*, Hiroo Kinoshita*

*Center for EUVL, University of Hyogo

Outline

Introduction and objective of this work

Experiments and results

- **1.** Identify the main contributors of outgassing components to carbon contamination.
- 2. Investigate the species of outgassing by Residual Gas Analyzer (RGA).
- **3.** Compare EUV and E-beam.

Summary

Introduction: Outgassing test requirement

- EUV resists must be passed the outgassing tests before being exposed in the EUV HVM scanner.
- Outgassing test source of either EUV light or E-beam are used to expose Resists and/or Witness samples (WS).
- OK judgment is given when the contamination film thickness and atomic% of non-cleanable element fall the certain critical values.

Objective:

- 1. What species is the contributor of contamination?
- 2. Are the EUV and E-beam comparable?

Resist coated Wafer

Experiments

- 1. Get the breakdown of resist components in total contamination thickness by using the special sample set.
 Each sample composed of the combination
 w/ or w/o of PAG and Protecting Unit (PU).
- **2.** Identify the species of outgassing and carbon contamination by RGA.
- 3. Compare those results between EUV and E-beam exposure.

Outgas evaluation tool @ EIDEC

^{*} HERC: <u>High power EUV Resist Contamination</u>

RGA measurement configuration

High Power EUV

HERC* analysis tool @ NewSUBARU BL9c

Electron Beam (E-beam)

EUVOM-9000 @ EIDEC

Side-view

300mm¢ wafer

Measure E-gun E-gun 1-300 amu **RGA** ~20 cm Witness Resist sample

> Expose 1 wafer (300mmф) with E_0 (60 min x1)

Sample Set composition

Sample Concept	Polymer	PAG (20wt% of polymer)	Quencher (0.1mol of PAG)
Model Resist	30 70 OO	$-S^+$ $-O_3S-C_4F_9$	
PAG free	OH Acid labile unit	none	
PU free	0 0 70 OH	-S ⁺ -O ₃ S-C ₄ F ₉	Tri-n-octylamine
PAG and PU free	Acid stable unit	none	

Outgassing source of each sample

Sample Concept	Polymer	PAG (20wt% of polymer)	Possible Source of Contamination
Model Resist	30 70 O O	$-S^+$ $-O_3S-C_4F_9$	PolymerProtecting UnitPAGBackground
PAG Free	OH Acid labile unit	none	PolymerDirectly decomposedProtecting UnitBackground
PU Free	0 0 0 70 OH	$-S^+$ $-O_3S-C_4F_9$	PolymerPAGBackground
PAG and PU Free	Acid stable unit	none	PolymerBackground

Model Resist Outgassing mechanism and measured contamination

How much is the contribution of each outgassing species?

Contribution of Background (BG) Atmosphere in Contamination Thickness

■ Contribution of Background in Contamination Thickness is 0.2 nm.

Contribution of base polymer

Negligible contribution from polymer.

Contribution of PU direct decomposition w/o PAG

Polymer
Protecting Unit

■ Negligible contribution from PU direct decomposition.

Contribution of PAG and PU

Polymer

Protecting Unit

PAG

- **Contribution of PAG**: 1.22 0.20 = 1.02 nm
- **Contribution of PU: 1.53 1.22 = 0.31 \text{ nm}**

Summary 1: Contamination Thickness composition by EUV

~70% of the Contamination Thickness is by PAG component

What species are found in RGA?

RGA Spectrum of Model Resist

RGA Spectrum of PU free sample (Contribution of PAG)

Total outgassing calculation

Partial Pressure change during the exposure of a 200 mm wafer with the Model Resist by EUV

Total Outgassing:
$$P_{\text{sample}}(\text{total}) = \sum_{t=0}^{t_{\text{end}}} \sum_{\text{amu}=1}^{300} P(\text{amu, t}) \times \begin{cases} \text{factor for a 300mm} \\ \text{wafer} \end{cases}$$

Summary2: Composition of Outgassing and Contamination thickness by EUV exposure

- Gas volume of PAG is about half in total amount but contribution in the contamination is about 70%.
- Polymer is also outgassing but does not make contribution to the contamination
- Outgassing from the PU direct decomposition is detected.

 But it is very small, and not be seen in contamination thickness.

Comparison between EUV and E-beam

RGA signals of Model Resist by EUV and E-beam

RGA signals of PU free sample by EUV and E-beam

Summary3: Composition of Outgassing and Contamination Thickness by EUV and EB

The PAG and PU contribution in Contamination thickness are same in EUV and E-beam. But the composition of total outgassing amount shows difference.

Summary

Using the samples with different combination of resist components, the contribution of each components in the contamination thickness were investigated.

PAG contribution was $60 \sim 70\%$, and PU contribution was $\sim 20\%$ in both of EUV exposure and E-beam exposure.

■ Most of the characteristic RGA peaks of PAG and PU were same in EUV and E-beam exposure.

But the peak ratio and total gas amount showed a little discrepancy.

We will study further on this finding.

Acknowledgment

This work was supported by New Energy and Industrial Technology Development Organization (NEDO).

